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Abstract

The conditions for the propagation of acceleration waves (sound waves) in incompressible elastic media
undergoing finite deformation are investigated. The incompressible hyperelastic solid media is considered in
accordance with the general constitutive theory of materials subject to internal mechanical constraints. The
equation of motion of acceleration waves is obtained using the theory of singular surfaces. A general
comparison is made between the magnitudes of the propagation speeds of waves in incompressible and
unconstrained solid media by the use of Mandel’s inequalities. The magnitudes of the speeds of
propagation of acceleration waves in the incompressible hyperelastic material classes of neo-Hookean,
Mooney–Rivlin, and St. Venant–Kirchhoff solids are determined. Comparisons are made of the specific
results concerning the magnitudes of wave propagation speeds making use of the corresponding material
parameters.
r 2002 Elsevier Science Ltd. All rights reserved.

1. Introduction

The mathematical modelling of acceleration waves which are commonly known as sound waves
is often made by the propagating singular surfaces of second order [1–3]. The second time
derivative .x of the displacement vector x, that is, acceleration, and higher order time derivatives
suffer discontinuities in the form of finite jumps across an acceleration wave front. In order to
obtain explicit results concerning wave motion, the theory of singular surfaces has to be
considered in conjunction with the constitutive theory of materials in which the propagation of
waves is examined. In the present study, the constitutive equations of neo–Hookean, Mooney–
Rivlin and St. Venant–Kirchhoff materials are considered as specific examples of the general class
of incompressible hyperelastic materials.
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Various aspects of acceleration wave motion in elastic media were investigated, for example, by
S, uhubi [4], Ogden [5], Chen [6], Truesdell and Toupin [3], and Scott [7]. Acceleration waves in
elastic bodies subject to purely kinematical constraints were considered by Scott [8], and
acceleration waves in thermoelastic materials subject to arbitrary thermomechanical constraints
were examined by Reddy [9]. Ericksen investigated the propagation of waves in isotropic
incompressible elastic materials [10]. Similar research on this subject was carried out by Truesdell
and Noll [11] and Scott and Hayes [12].
In this study, the physical variables of temperature and entropy are neglected; hence, attention

is confined to the purely mechanical theory of incompressible hyperelastic solids. The basic results
of the differential geometry of singular surfaces concerning acceleration waves is reviewed and the
constitutive equations of incompressible hyperelastic solids are presented. The magnitudes of the
speeds of propagation of acceleration waves in incompressible and unconstrained materials are
compared on a general basis by using the method of Mandel [13, 14]. A similar comparison of
wave speeds in elastic and elastic–plastic solids by the use of Mandel’s type of inequalities was
made by Reddy and G .ultop [15]. The magnitudes of the speeds of propagation of acceleration
waves were obtained in specific classes of incompressible hyperelastic solids by using the strain
energy functions of neo-Hookean, Mooney–Rivlin and St. Venant–Kirchhoff materials. The
results are then compared with each other making use of the specific material parameters.
Both indicial notation and vector–tensor notation will be adopted whichever is appropriate to

use. Indices of upper case letters will be used to denote the variables in the reference configuration
and indices of lower case letters will be used to denote the variables in the current configuration
throughout the text. Summation convention will be in use throughout the present study. For
example, in an equation such as aj=Ajkbk summation is implied over index k, but not over j.

2. Singular surfaces and acceleration waves

In this section the basic concepts of the theory of singular surfaces within the context of
acceleration waves is reviewed. The material reviewed here is covered more extensively by, for
example, Eringen and ,Suhubi [1], McCarthy [2], and Wang and Truesdell [16].
A moving surface in R3 is described as a one-parameter family of surfaces and will be denoted

by S(t). In the reference co-ordinates the position of the surface at time t is described by the
equation

SðX; tÞ ¼ 0: ð1Þ

The function S(X,t) is assumed to be at least continuously differentiable, but of arbitrary shape.
Here X denotes the position vector of a point on the surface in the reference co-ordinates.
The velocity u of a material point on the surface, and the normal velocity U of the surface, or its

speed of displacement, are defined by

u ¼
@x

@t
; U ¼ udN; ð2Þ

where N is the unit normal vector to the surface in the reference co-ordinates. While the position
of the surface S(t) is being changed in R3 due to the motion, the unit normal vector n to the
surface in the current co-ordinates will change. The relation between the unit normal N in the
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reference co-ordinates to the surface S(X,t) and the unit normal n in the current co-ordinates to
the surface S(t ) may be stated by

N ¼
FTn

FTn
�� �� 3 n ¼

F�TN

F�TN
�� ��; ð3Þ

where F=qx/qX is the deformation gradient tensor.
Singular surfaces S in the reference configuration, and S in the current configuration with their

corresponding unit normals N and n are illustrated in Fig. 1. The vectors X and x in this figure
represent, respectively, the positions of a point in the reference and in the current configurations
of a geometrically non-linear continuum.
A propagating smooth surface divides the body O into two regions, forming a common

boundary between them. The unit normal N to the surface S(t) is considered to be in the direction
in which S(t) propagates. The region ahead of the surface is denoted by O+ and the region behind
the surface is denoted by O�. Let f (X,t) be an arbitrary scalar-, vector- or tensor-valued function
which is continuous in both O+ and O�. This function has definite limits f + and f � at a point on
S(t), as the point is approached from O+ and O�. The jump of f at XAS(t) is defined by

½f ðXÞ� � f þ � f �: ð4Þ

The surface S (t) is called a singular surface with respect to f at time t if [ f ]a0. A singular surface
that has a non-zero normal velocity U is called a wave.
Attention will be focused henceforth on an acceleration wave, which is defined as a propagating

singular surface across which the motion x(X,t), velocity ’xðX;tÞ and, hence the deformation
gradient F(X,t) are continuous, but the quantities involving the second derivatives of the motion
such as acceleration .x and the time rate of the deformation gradient ’F are discontinuous. An
acceleration wave is thus a second order singular surface. It is assumed that all functions which
suffer discontinuities across a singular surface are continuous elsewhere in the material body. The
jumps in acceleration and the deformation gradient rate will be denoted by

½ .x� ¼ s; ½ ’F� ¼ �U�1s#N: ð5Þ
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Here, the components of the dyadic product of vectors s and N may be defined as s#N=sjNK.
Hence, (u#v)a=u(v . a) holds for any three vectors u, v and a. Differentiating the identity F�1

F�I

with respect to time t and using relations (3) and (5) the following results are obtained:

@F�1

@t

� �
¼ F�TN

�� �� U�1ðF�1sÞ#n;
@F�T

@t

� �
¼ F�TN

�� �� U�1n#ðs F�TÞ: ð6Þ

The local form of the law of the balance of linear momentum written in the reference
configuration is

DivTþ r0b ¼ r0 .x: ð7Þ

where T is the first Piola–Kirchhoff stress tensor, b the specific body force and r0 the mass density
in the reference configuration. Body forces are assumed to be continuous at all times, so that the
jump of the equation of the balance of linear momentum (7) across the singular surface is

½DivT� ¼ r0½ .x�: ð8Þ

By using Eq. (5) and the following relation:

½GradA� ¼ �U�1½ ’A�#N ð9Þ

between the jumps in spatial and temporal derivatives of a second order tensor A, Eq. (8) becomes

½ ’T�N ¼ �r0U s: ð10Þ

3. Constitutive equations of incompressible hyperelastic solids

Hyperelastic materials have the ability to undergo finite deformation and their corresponding
strain energy functionWmay be expressed in terms of the deformation gradient tensor F. The first
Piola–Kirchhoff stress tensor T is obtained by differentiating the corresponding strain energy
function, i.e.,

W ¼ W ðFÞ ) T ¼
@W

@F
: ð11Þ

According to the physical description of incompressibility constraint, the incompressible materials
may undergo only isochoric motion so that their total volume, and mass density remain constant.
The mathematical definition of incompressibility which follows the physical description is

det F ¼
r0
r

� 1; ð12Þ

where r is the mass density in the current configuration, hence the mass density of an
incompressible material in the reference configuration is equal to its mass density in the current
configuration at all times.
The theory of incompressible materials that will be considered here conforms to the general

theories of constrained elastic materials proposed by Trapp [17] and Gurtin and Podio-Guidugli
[18]. According to this theory the strain energy function W of a material subject to a purely
mechanical constraint is expressed by

W ðFÞ ¼ W0ðFÞ þ kfðFÞ: ð13Þ
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HereW0(F) is the unconstrained counterpart of the strain energy, k is an arbitrary scalar field, and
f(F) is the mechanical constraint function such that

fðFÞ ¼ 0: ð14Þ

Eq. (14) indicates that the constraint function does not make any contribution to the strain energy
(13), but its present form of representation is necessary in the context of hyperelastic solids. Stress
is the derivative of strain energy function with respect to F as described by Eq. (11) and a
contribution of constraint exists on stress, since the derivative of the constraint function f with
respect to F is not equal to zero. For an incompressible material the mechanical constraint
function (14) becomes

fðFÞ ¼ det F� 1; ð15Þ

and the scalar k is identified by

k ¼ �p; ð16Þ

where p is the hydrostatic pressure. In view of Eqs. (15), (12) and (13) it is obvious that the
incompressibility constraint does not contribute to the strain energy, as explained by Spencer [19].
However, the incompressibility constraint contributes to stress and the substitution of Eqs. (13),
(15) and (16) in (11) yields

T ¼ T0 � pF�T ¼
@W0

@F
� pF�T; ð17Þ

where T0 is the unconstrained counterpart of stress.
A strain energy function for unconstrained hyperelastic solids was proposed by Ciarlet and

Geymonat [20], which is of the form

W ðFÞ ¼ ajjFjj2 þ bjjCof Fjj2 þ cðdet FÞ2 � d Log ðdet FÞ þ e ð18Þ

with a>0, b>0, c>0, d>0, eAR, and where

jjFjj2 ¼ tr FTF; jjCof Fjj2 ¼ 1
2
ðtr FTFÞ2 � 1

2
tr ðFTFÞ2:

Here tr defines the trace of a second rank tensor, that is, trA=Ajj=A11+A22+A33 for any second
rank tensor A.
According to Ciarlet [21], the strain energy function of incompressible Mooney–Rivlin

materials may be recovered from Eq. (18) by setting c=d=e=0. Further simplification of
Eq. (18) by the assumption that b=0 yields the result obtained by Blatz [22], which is the strain
energy function of neo-Hookean materials. These results will be embedded in Eq. (13) as it
provides a more powerful tool in view of Eq. (17). The first Piola–Kirchhoff stress tensors TMR for
Mooney–Rivlin materials, and T

H for neo-Hookean materials are obtained by substituting the
corresponding cases of Eq. (18) in Eq. (17), which are

TMR ¼ 2aFþ 2b ðtr FTFÞ F� 2b FFTF� p F�T; ð19Þ

TH ¼ 2aF� pF�T: ð20Þ
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St. Venant–Kirchhoff materials are another class of compressible hyperelastic materials whose
unconstrained counterpart of strain energy function W0

VK is defined in Ref. [21] as

W VK
0 ¼

l
2
ðtr EÞ2 � m trE2: ð21Þ

Here l and m are the Lame constants, and E is the Green–St. Venant strain tensor which is defined
by

E ¼ 1
2
ðFTF� IÞ:

The strain energy function WVK of incompressible St. Venant–Kirchhoff materials is obtained by
the substitution of Eq. (20) in Eq. (13). The corresponding first Piola–Kirchhoff stress tensor TVK

is obtained from Eq. (17) which is of the form

TVK ¼ l ðtrEÞ Fþ 2mFE� pF�T: ð22Þ

4. Propagation of acceleration waves in incompressible elastic media

The differentiation of the constraint equation f(F) in Eq. (15) with respect to time yields

@f
@t

¼
@detF

@F
d
@F

@t
¼ ðdet FÞF�Td ’F ¼ 0: ð23Þ

By using Eqs. (3), (5a) and (6) with the fact that, det F=1 in an incompressible medium, result
(23) is simplified to the following:

sdn ¼ 0; ð24Þ

which is a condition imposed by the incompressibility constraint on the propagation of
acceleration waves. Eq. (24) indicates that the amplitude vector s and the unit normal vector n to
the wave front are perpendicular to each other, that is, acceleration waves in incompressible media
can propagate only in the form of transverse waves. Hence, propagation of a longitudinal wave
with s=n is impossible in an incompressible solid.
The substitution of the derivative of the stress T in Eq. (17) for incompressible media should be

substituted in Eq. (10) in order to obtain the relation between the jumps in the time derivative of
unconstrained part of stress ’T0; time derivative of pressure ’p; and the amplitude vector s. The
result is the following:

½ ’T0�N� U�1p F�TN
�� ��2 ðn#nÞ s� F�TN

�� �� ½ ’p� n ¼ �r0 U s: ð25Þ

The jump in the time rate of pressure is obtained from Eq. (25) by using Eq. (24) as follows:

½ ’p� ¼ F�TN
�� ���1nd½ ’T0�N: ð26Þ

The substitution of Eq. (26) in Eq. (25) yields

ðI� n#nÞ ½ ’T0�N ¼ �r0 U s: ð27Þ
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The components of the time rate ’T0 of stress may be obtained by using Eq. (11) as follows:

@ ’T0
iK

@t
¼

@2W0

@FiK@FjL

@FjL

@t
: ð28Þ

By using Eq. (5), the jump of Eq. (28) across the wave front becomes

½ ’T0
iK � ¼ �U�1xiKjL sjNL; ð29Þ

where the components of the fourth order elasticity tensor x are defined by

xiKjL ¼
@2W0

@FiK@FjL

¼
@TiK

@FjL

: ð30Þ

The substitution of (29) in Eq. (27) yields the equation of motion of acceleration waves in
incompressible elastic media, which is

ðI� n#nÞQs ¼ r0U
2s: ð31Þ

HereQ is the second order acoustic tensor for the unconstrained elastic media, whose components
are defined by

Qij ¼ xiKjLNK NL: ð32Þ

The corresponding acoustic tensor Q* for the incompressible elastic media is as follows:

Q� ¼ ðI� n#nÞ Q: ð33Þ

The acoustic tensor Q of the unconstrained elastic media is symmetric, whereas the acoustic
tensor Q* of the incompressible elastic media is not symmetric. If Q possesses the property of
positive definiteness in addition to the symmetry it has three eigenvalues lj=r0Uj

2 corresponding
to three possible wave speeds, and an orthonormal triad {sj}of wave amplitudes that correspond
to the eigenvectors. Scott and Hayes [12] showed that, despite the lack of symmetry of the acoustic
tensor in constrained materials, the eigenvalues are real. Ericksen [10] first showed that one of the
eigenvalues of the acoustic tensor in incompressible isotropic materials is zero, and hence only two
non-zero eigenvalues exist. Truesdell and Noll [11] generalized the results of Ericksen for
anisotropic materials. Therefore, in an incompressible elastic material one of the speeds of
propagation is zero: U=l=0, which has no physical significance. The remaining two speeds of
propagation may be obtained from the roots of the characteristic polynomial equation which is
obtained from Eq. (31) as follows:

Det ðQ� � lIÞ ¼ l2 � I�Qlþ II�Q ¼ 0: ð34Þ

Here I�Q and II�Q are the first and the second invariants of the Q
* which is a singular matrix, for

which, III�Q¼ DetQ� ¼ 0: The roots of Eq. (34) are obtained by the following:

l1;2 ¼
I�Q7

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
I�2Q � 4II�Q

q
2

: ð35Þ

Mandel compared first in Refs. [13,14] the speeds of propagation of acceleration waves in elastic
and plastic materials by the use of certain inequalities. These inequalities indicate that the
magnitudes of wave speeds are greater in elastic materials than the magnitudes of wave speeds in
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plastic materials. A similar comparison will be made in the context of incompressible elastic solids
by using Mandel’s type of inequalities.
The characteristic equation (34) may be rewritten in the form

f ðlÞ ¼ detA det fI� A�1ðn#nÞQg; ð36Þ

where A=Q�lI. Using the identity det (I�a#b)�1�a . b, for any two vectors a and b and using
the symmetry of Q, Eq. (36) is transformed as follows:

f ðlÞ ¼ detAð1� A�1ndQnÞ ¼ 0: ð37Þ

Coinciding the co-ordinate axes in use with the principal axes of A and Q, (37) can be written in
the form

f ðlÞ ¼ ðq1 � lÞ ðq2 � lÞ ðq3 � lÞ � ðq2 � lÞ ðq3 � lÞ q1 n21

� ðq1 � lÞ ðq3 � lÞ q2n
2
2 � ðq1 � lÞ ðq2 � lÞ q3n

2
3 ¼ 0; ð38Þ

where {qj} are the eigenvalues of Q and {nj} are the components of n. One of the roots of Eq. (38)
is zero, that is l3=0, which is compatible with the results of Ericksen [10]. The corresponding
eigenvalues are ordered by

l1Xl2Xl3 ¼ 0: ð39Þ

The eigenvalues of Q may be ordered similarly:

q1Xq2Xq3: ð40Þ

If {qj} are substituted in Eq. (38) the following inequalities are obtained:

f ðq1Þp0; f ðq2ÞX0; f ðq3Þp0; f ð�NÞX0: ð41Þ

Inequalities (41) yield the following Mandel’s type of inequalities:

q1Xl1Xq2Xl2Xq3X0: ð42Þ

Since lj=r0Uj
2, the following result is obtained from Eq. (42):

Uc
1XU1XUc

2XU2XUc
3X0: ð43Þ

Here {Uj} are the speeds of propagation of acceleration waves in incompressible media, and {Uj
c}

are the corresponding speeds in compressible media. According to inequalities (43), the
magnitudes of the speeds of propagation of acceleration waves in compressible media in each
direction constitute the upper bounds for the speeds of propagation of acceleration waves in
incompressible media.

5. Determination of wave speeds in specific material classes

In this section the speeds of propagation of acceleration waves in the incompressible
hyperelastic material classes of Mooney–Rivlin, neo-Hookean and St. Venant–Kirchhoff
materials will be obtained. Acceleration waves will be assumed to be propagating in a region
which is in a state of an isochoric deformation whose deformation gradient tensor F is described
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by the following matrix {F} of its components:

Ff g ¼

a 0 0

0 b 0

0 0 a�1b�1

8><
>:

9>=
>;; ð44Þ

where a>0 and b>0.
The components of normal vectors N and n to the wave front defined by Eq. (3) will be assumed

to be of the form

fNg ¼ fng ¼

1

0

0

8><
>:

9>=
>;: ð45Þ

The acoustic tensorQ*
MR for Mooney–Rivlin materials is obtained using Eqs. (19), (22), (30) and (33):

Q�
MR ¼ðI� n#nÞ f2aIþ 2b ðFN#FNÞ þ 2b ðtr FTFÞ I� 2bðFNdFNÞI

� 2bðn#nÞ ðFN#FNÞ � 2b FTF� 2b ðn#nÞg: ð46Þ

Finally the substitution of (44) and (45) in Eq. (46) yields the specific form of Q�
MR for the given

state of isochoric deformation, whose element matrix is

fQ�
MRg ¼

0 0 0

0 Q22 0

0 0 Q33

8><
>:

9>=
>;; ð47Þ

where

Q22 ¼ 2a þ 2ba�2b�2; Q33 ¼ 2a þ 2bb2: ð48Þ

The two non-zero and real speeds of propagation U1
MR, U2

MR of acceleration waves in Mooney–
Rivlin materials are obtained from the eigenvalues of the obviously singular tensor defined in
Eq. (47):

UMR
1 ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2a þ 2ba�2b�2

r0

s
; UMR

2 ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2a þ 2bb2

r0

s
: ð49Þ

The eigenvectors s
1 and s

2 of Eq. (46) corresponding to the wave speeds given in Eq. (49) in
normalized form become

s1
� �

¼

0

1

0

8><
>:

9>=
>; and s2

� �
¼

0

0

1

8><
>:

9>=
>;: ð50Þ

The eigenvectors s1 and s2 ofQn and the corresponding eigenvectors of the unconstrained acoustic
tensor Q coincide.
The modified forms of the results in Eq. (49) are illustrated graphically: (U1

MR)2(r0/b) in Fig. 2,
and (U2

MR)2(r0/b) in Fig. 3 for varying a in the special deformation case with a=b, for certain
values of the dimensionless parameter (a/b).
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In an undeformed state ahead of the wave front F=I, so that a=b=1 and the non-zero
propagation speeds in Eq. (49) are reduced to

UMR ¼ UMR
1 ¼ UMR

2 ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2a þ 2b

r0

s
: ð51Þ

Two non-zero identical wave propagation speeds are obtained in neo-Hookean materials by
setting b=0 in Eq. (49) which are

UH ¼ UH
1 ¼ UH

2 ¼

ffiffiffiffiffi
2a

r0

s
: ð52Þ
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Eq. (52) indicates that wave propagation speeds in neo-Hookean materials are independent of the
state of deformation ahead of the wave front.
The acoustic tensor Q*

VK of St. Venant–Kirchhoff materials is obtained by the substitution of
Eqs. (21), (30) and (32) in Eq. (33):

Q�
VK ¼ ðI� n#nÞ flðtr EÞ Iþ ðlþ 2mÞ ðFN#FNÞ þ 2mðENdNÞ Iþ 2mFTFg: ð53Þ

For the deformation described by Eq. (44) the matrix of the components of (53) becomes

fQ�
VKg ¼

0 0 0

0 Q22 0

0 0 Q33

8><
>:

9>=
>;; ð54Þ

where

Q22 ¼
l
2
a2 þ b2 þ a�2b�2 � 3
� �

þ m a2 þ 2b2 � 1
� �

; ð55Þ

Q33 ¼
l
2
a2 þ b2 þ a�2b�2 � 3
� �

þ m a2 þ 2a�2b�2 � 1
� �

: ð56Þ

The non-zero eigenvalues of Eq. (54) yield the two speeds of propagation U1
VK and U2

VK of
acceleration waves in St. Venant–Kirchhoff materials:

UVK
1 ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
l
2
a2 þ b2 þ a�2b�2 � 3
� �

þ m a2 þ 2b2 � 1
� �

r0

vuuut
; ð57Þ

UVK
2 ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
l
2
a2 þ b2 þ a�2b�2 � 3
� �

þ m a2 þ 2a�2b�2 � 1
� �

r0

vuuut
: ð58Þ

The modified forms of the results in Eqs. (57) and (58) are illustrated graphically: (U1
VK)2(r0/m) in

Fig. 4, and (U2
VK)2(r0/m) in Fig. 5 for varying a in the special deformation case with a=b for

certain values of the dimensionless ratio (l/m) of the Lame constants.
Substitution of a=b=1, for on undeformed St. Venant–Kirchhoff material in Eq. (58) yields

the corresponding speed UVK:

UVK ¼ UVK
1 ¼ UVK

2 ¼

ffiffiffiffiffiffi
2m
r0

s
: ð59Þ

According to Ciarlet [21] the following inequality holds for the material constant a in Eq. (18) and
the Lame constant m in Eq. (21)

a > m: ð60Þ

If the speeds of propagation of acceleration waves in undeformed material classes defined in Eqs. (51),
(52) and (59) are compared in view of inequality (60) the following inequalities are derived:

UMR > UH > UVK : ð61Þ
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6. Conclusions

Incompressible hyperelastic solids are treated as a specific case of the general theory of
hyperelastic materials with internal mechanical constraints, and the corresponding acoustic tensor
is obtained using the theory of singular surfaces. Similar to the earlier investigations, for example
in Refs. [10–12] the acoustic tensor is found to be non-symmetric and singular, one of whose
eigenvalues is zero. The speeds of propagation of acceleration waves in incompressible and
compressible media are compared by the use of Mandel’s type of inequalities (43) which is one of
the main purposes of the present study. It is concluded that the incompressibility constraint
reduces the magnitudes of the propagation of acceleration waves in comparison to the
corresponding speeds in unconstrained materials. Two non-zero speeds are obtained in

ARTICLE IN PRESS

0

2

4

6

8

10

12

0.5                                    1 1.5                                    2

 λ/

 λ/µ= 2
 λ/µ= 1.5

 λ/µ= 2.5
 λ/µ= 1

µ= 3

10
3 ρ 0

/b
 (U

2V
K
)2

 λ/µ= 2.5

α

Fig. 5. Variation of ðr0=mÞ UVK
2

� �2
as a function of the stretch a, for certain values of the dimensionless parameter l/m.

0

5

10

15

20

25

30

35

40

45

50

0 0.5 1 1.5 2

λ /µ = 3

λ/ µ = 2.5

λ/ µ = 2

 λ/ µ = 1.5

λ/ µ = 1

 = 2.5

10
3
ρ 0

/b
 (

U
1

V
K
)2

α

λ/µ

Fig. 4. Variation of ðr0=mÞ UVK
1

� �2
as a function of the stretch a, for certain values of the dimensionless parameter l/m.

T. G .ultop / Journal of Sound and Vibration 264 (2003) 377–389388



Mooney–Rivlin and St. Venant–Kirchhoff materials in a state of isochoric deformation (44).
Finally the magnitudes of the speeds of propagation of acceleration waves in certain materials
which represent a broad class of hyperelastic materials are ordered by the use of certain
inequalities (61). Another comparison between results (49) and (51) indicate that the speeds of
propagation of acceleration waves in deformed solids are greater than the corresponding speeds in
solids that are in an undeformed state ahead of the wave font.
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